Journal of Organometallic Chemistry, 398 (1990) 241-249 Elsevier Sequoia S.A., Lausanne JOM 21098

The molecular and electronic structures of ions and radicals derived from tetramethyllead, hexamethyldilead, dimethyllead, and tetramethyldilead: an SCF-MO study

Christopher Glidewell

Chemistry Department, University of St Andrews, St Andrews, Fife KY16 9ST (U.K.) (Received June lst, 1990)

Abstract

Molecular geometries and energies have been calculated, using the semi-empirical MNDO method for closed shell species, and the UHF-MNDO method for neutral radicals and cation radicals for $PbMe_4$, Pb_2Me_6 , $PbMe_2$, and three isomeric forms of Ph_2Me_4 and all of their cation radicals, together with fragment ions and radicals including ($PbMe_3$)⁺, $PbMe_3$, and (Pb_2Me_x)⁺ for $1 \le x \le 5$. The radical cation ($PbMe_4$)⁺ is calculated to have C_{3v} skeletal symmetry, with a D_{2d} isomer some 26 kJ mol⁻¹ higher in energy: the dinuclear cation radical (Pb_2Me_6)⁺ is calculated to be a a(Pb-Pb) radical of D_{3d} skeletal symmetry. The mass spectral fragmentations of both $PbMe_4$ and Pb_2Me_6 are discussed.

Introduction

In two recent papers [1,2], we reported MNDO calculations in radical cations derived from $SnMe_4$ and Sn_2Me_6 , and from $GeMe_4$ and Ge_2Me_6 . A major point of difference between $(SnMe_4)^+$ and $(GeMe_4)^+$ is that the tin cation was calculated [1] to have C_{3v} symmetry, consistent with the interpretation of its electron spin resonance spectrum in frozen $CFCl_3$ matrices [3], whereas the germanium cation was calculated to have D_{2d} skeletal symmetry: experimentally $(GeMe_4)^+$ was found to have C_{2v} symmetry, suggested [4] to arise from D_{2d} by matrix perturbation effects.

As we have previously discussed cation radicals derived from CMe_4 and $SiMe_4$ [5,6], we present in this paper the results of a semi-empirical study of cations and radicals derived not only from $PbMe_4$ and Pb_2Me_6 , but also from the as yet uncharacterised $PbMe_2$ and Pb_2 Me,.

Calculations

All calculations of molecular geometry and energy, and of electronic structure were made using the MNDO method [7], as implemented in Version 5.0 of the MOPAC system [8]. The published atomic parameters were used for H,C, and Pb [7,9]. UHF wavefunctions were employed for all open-shell species, and all geometric variables were independently and simultaneously optimised unless it is stated otherwise: the PRECISE option was used throughout. The accuracy and reliability of MNDO calculations on compounds containing lead have been discussed at length by Dewar [9].

Results and discussion

$PbMe_{4}$ and $Pb_{2}Me_{6}$, and their radical cations

The two neutral molecules $PbMe_4$ and Pb_2Me_6 optimise to geometries having T_d and D_{3d} skeletal symmetry precisely: in each case there is essentially free rotation about the Pb-C bonds. These geometries have been previously discussed by Dewar, and the results obtained here are in agreement with those reported earlier [9].

The HOMO of **PbMe₄** is calculated to have t_2 symmetry in the point group T_d , as suggested from an early photoelectron study [10]. The ion $(PbMe_4)^+$ is thus, after vertical ionisation, sensitive to Jahn-Teller distortion. Two distortion pathways are open for skeletal perturbation from T_d symmetry: distortion along one component of the e vibrational mode leads to D_{2d} symmetry, while distortion along a t_2 vibration gives a structure of C_{3v} symmetry. Free optimisation of the geometry of $(PbMe_4)^+$ converged to a structure of precise $C_{3\nu}$ symmetry, in which the unique Pb-C bond (Table 1) is considerably longer than the other three Pb-C bonds; this structure is thus very similar to those calculated [1] and observed [3] for the analogous cation $(SnMe_4)^+$. Within the C_{3v} geometry, the PbMe₃ fragment having three-fold rotational symmetry is very considerably flattened towards planarity: the C-Pb-C angle is 117.8°, considerably closer to the 120.0" calculated for (PbMe₃)⁺ than to the 108.8" calculated for the neutral radical **PbMe₃** (see below). Similarly the unique methyl group is considerably flattened, with an H-C-H angle of 117.8°, considerably closer to the 120° calculated, and observed [11], for the methyl radical than to the 110° expected in a normal methyl group bound to a heteroatom. These geometrical properties suggest that the $C_{3\nu}$ isomer of $(PbMe_4)^+$ is tending towards dissociation to the cation $(PbMe_3)^+$ and the neutral methyl radical: the calculated energy for this dissociation is only + 13.9 kJ mol⁻¹.

Some 25 kJ mol⁻¹ higher in energy is an isomeric cation of D_{2d} symmetry: when only C_{2v} symmetry was imposed on the skeleton (cf the second isomer of $(SnMe_4)^+$ [1]), D_{2d} symmetry nevertheless resulted.

These two isomeric forms for $(PbMe_4)^+$ should be readily distinguishable using the hyperfine coupling due to hydrogen atoms in the ESR spectrum. In the C_{3v} isomer, the calculated spin density at the hydrogen atoms in the unique methyl group is -0.0238, while that for the remaining hydrogen atoms is +0.0020: adopting the scale factor of 850 G suggested [1] for tin-centred radicals, the C_{3v} isomer of $(PbMe_4)^+$ may be expected to show hyperfine coupling to three equivalent hydrogen atoms with $A(^1H)$ of ca. 20 G, and to a further nine equivalent hydrogen atoms with $A(^1H)$ of ca. 1.7 G. For the D_{2d} isomer, on the other hand, the spin density on the twelve hydrogen atoms, rendered equivalent by a combination of skeletal symmetry and free rotation about the Pb-C bonds, is -0.0013, suggesting hyperfine coupling to twelve equivalent hydrogen atoms with $A({}^{1}H)$ of ca. 1.1 G.

In neutral **Pb₂Me₆**, the HOMO has a_{1e} symmetry, and is strongly **localised** in the Pb-Pb bond, as a bonding orbital. Vertical ionisation from this level to give $(Pb_2Me_{\kappa})^+$ is thus expected to yield a molecular ion not sensitive to Jahn-Teller distortion, but with a much weakened Pb-Pb bond. Full optimisation of this structure gave a geometry retaining D_{3d} skeletal symmetry, in which the Pb-Pb distance has increased from 2.771 Å calculated for neutral Pb₂Me₆ to 3.072 Å calculated in the cation $(Pb_2Me_6)^+$. At the same time the individual $PbMe_3$ fragments have become rather flatter: the C-Pb-C angle increased upon ionisation from 107.0" in the neutral to 113.8" in the cation, intermediate between the values calculated for the radical PbMe₃ and the corresponding cation (PbMe₃)⁺ (see below, and Table 1). This cation is thus very similar in structure to the analogous tin cation $(Sn_2Me_6)^+[1]$: neither of these species exhibits the almost planar coordination of the metal atoms deduced [12] from the ESR spectrum. As for the tin system also, ionisation of Pb_2Me_{κ} significantly weakens the Pb-Pb bond, as expected from the localisation of the HOMO in this bond: the calculated value of D(Me₃Pb-PbMe₃) in the neutral compound is 82.0 kJ mol⁻¹, while that of $D(Me_3Pb^+-PbMe_3)$ in $(Pb_2Me_{\kappa})^+$ is only 27.0 kJ mol⁻¹.

$PbMe_3$ and $(PbMe_3)^+$

The neutral radical $PbMe_3$ is calculated to have C_{3v} skeletal symmetry with a sharply pyramidal structure: the calculated angle C-Pb-C is 108.8°, similar to the angles calculated for the related radicals $SiMe_3$ (113.5°[5]), $GeMe_3$ (112.6°[2]) and $SnMe_3$ (110.0°[1]): these radicals, which are all found experimentally to be pyramidal [13–15], may be contrasted with CMe_3 , calculated [5,16] and observed [17] to have a planar skeleton. There is thus a monotonic change in the C-M-C angle in radicals MMe_3 as M changes from carbon through to lead. The distinction between CMe_3 and its heavier analogues has been discussed [1] in terms [18] of the relative electronegativities of the central atom and the ligating methyl groups.

The cation $(PbMe_3)^+$ is calculated to have a planar PbC_3 skeleton, as expected: the LUMO is largely concentrated on the central atom, as a 6p orbital normal to the skeletal plane.

ESR spectroscopy should provide a ready distinction between $(Pb_2Me_6)^+$ and its likely open-shell dissociation product $PbMe_3$. The mean spin densities calculated at hydrogen are +0.0016 and -0.0073 respectively: hence, using the same factor, 850 G, as earlier, the ESR spectrum of $(Pb_2Me_6)^+$ should be **characterised** by hyperfine coupling to eighteen equivalent hydrogen atoms with $A(^{1}H)$ of ca. 1.4. G, while that of **PbMe**₃ should be **characterised** by hyperfine coupling to only nine equivalent hydrogen atoms, but with $A(^{1}H)$ of ca. 6.2 G. Moreover the 6s spin density calculated at lead (^{207}Pb has natural abundance 22.1% and nuclear spin I = 1/2) is +0.0568 in the mononuclear radical **PbMe**₃ but only - 0.0068 in binuclear (**Pb**₂Me₆)⁺: hence the patterns of ^{207}Pb satellites will also be entirely different.

$PbMe_2$ and $(PbMe_2)^+$

The lead(II)alkyl **PbMe**₂ is calculated to have a bond angle C-Pb-C of only 97.3": this is typical not only of the bond angles in **lead(II)** halides [19], but of other

	Skeletal	AH_{i}°	Distances (Å)		Angles (°)		p[H(1s)]	p[Pb(6s)]	
	point group	(ku moi '')	Pb-C	Pb-Pb	C-Pb-C	C-Pb-Pb			
(a) PbMe , and Pb , Me, and	their radio	al cations			7				i i
PDMe4	PT	+ 111.2	2.1/2		109.5		I		
(PbMe4) ⁺	с з <i>в</i>	+ 975.7	2.472(× 1) 2.199(x 3)		98.6(× 3) 117.8(× 3)		0.0238(× 3 + 0.0020(× 9) – 0.0052	
	D _{2d a}	+ 1001.5	2.243		113.8(x 2)		-0.0013	-0.0164	
Pb ₂ Me ₆	D_{3d}	+ 190.2	2.177	2.771	107.3(x 4) 107.0	111.8	1	I	
(Pb ₂ Me ₆) ⁺	D^{3d}	+ 995.7	2.189	3.072	113.8	104.6	+ 0.0018	- 0.0068	
(b) PbMe ₃ and (PbMe ₃) ⁺ PbMe ₃	C 3"	+136.1	2.176		108.0		- 0.0073	+ 0.0568	
(PbMe3) ⁺	D_{3h}	+ 886.6	2.1%		120.0	1			
(c) <i>PbMe</i> ₂ and (<i>PbMe</i> ₂) ⁺ PbMe ₂	C 2"	+ 42.0	2.140		97.3	1	ı		
(PbMe ₂) ⁺	C 2"	+ 897.9	2.1%		118.6	I	-0.0096	+ 0.0261	

) | | |

] 4] 6() >)

4 r] ;;

l

ľ

1

3

r

Table 1

Optimised molecular parameters

(d) Isomeric forms of Pb_2Me	A and of (F	b2Me4)^+						
Pb ₂ Me ₄ , (1)	<u>,</u> 2	+ 67.5	2.147	2.975	97.6	119.4	I	
(Pb ₂ Me ₄) ⁺	ۍ. ت	+ 871.7	2.171	2.929	107.3	125.7	- 0.0081 + 0.0417	7
Pb_2Me_4 (2)	c 2v	<i>†</i> 129.9	2.345(×4,C _b)	2.876	98.9(C _b -Pb-C _b)	118.3(C ₁)		
			2.156(× 2,C ₁)	100 0	95.8(C ₁ -Pb-C _b)			
(Po2Me4)	c _{2 "}	+ 920.5	2.209(X 2, Po ₁ -C _b)	3.081	$10/.0(C_b - Po_1 - C_b)$	$121.0(C_1 - Pb_1 - Pb_2)$	+0.0011(x6) +0.014	3(P01)
			$2.517(\times 2, Pb_2 - C_b)$		$90.2(C_b - Pb_2 - C_b)$	$103.8(C_1 - Pb_2 - Pb_1)$	+0.0001(x 3) - 0.000	2(Pb2)
			2.135(x 1.Pb, -C,) 2.135(x 1.Pb, -C,)		10/./(C ₁ -Pb ₁ -C _b) 99.7(CPb ₂ -C _b)		- 0.0267(x 3)	
Me ₃ PbPbMe ⁽³⁾	ť	+ 102.5	2.174(x 3)	2.750	101.4(x 3)	116.7(x 3)		
,	1		2.127(x 1)			167.6(x 1)		
(Me ₃ PbPbMe) ⁺	ూ	+ 885.6	$2.507(\times 1, Pb_1)$	2.919	95.q x 2)	99.q x 1,Pb 1)	$-0.0278(\times 3) - 0.0021$	1(Pb ₁)
			$2.163(\times 2, Pb_1)$ 2.106(×1 Pb_1)		102.0 (× 1)	126.7(x 2,Pb₁) 169.3(x 1 Ph .)	$+0.0031(\times 6) - 0.0001$ +0.0003(\times 3)	1(Pb ₂)
(1) Od (DE 142-14			(Zn 1'1 ~)nn1:7			120 1,1 A)U(0,1)		
(e) Uner Ions (FO ₂ Me _x) 'Me_PhPhMe_) ⁺ (1)	ر	1 880 3	2 107(v 3)	. 670 6	116 27 × 3)	101 3(Y 3)		
	ັ	-	2153(×2)			197.0(v. 9)		
(L) + (J) + (J)	ر	+ 778 4	2 157(× 2)	2 011 1		120.0×2	I	
	5		2.105(×1)	110.2		94.3(x 1)		
Pb, Me,) ⁺	ۍ	+ 827.5	2.114	2.930	I	114.0	+ 0.0063 + 0.0051	1
$(Pb_2Me)^+$ (8)	'౮ <u>`</u>	+ 895.2	2.127	2.857	1	102.7	I	
^a Skeletal symmetry D _{2d} im	iposed: str	ucture optin	nised with 38 independent	geometri	c variables, (3N - 6) =	45.		

245

2000

Ŗ

1 144 -

Ξ

OF THE LOOP DAY.

2005

1.11

alkyl derivatives of the heavier main-group elements, such as **SbMe₃**[20] and **SeMe₂**[21].

The HOMO of $PbMe_2$ is of a_1 symmetry, localised mainly on the lead atom, and can be described as a lone pair pointing along the two-fold rotation **axis**. The LUMO is an almost pure lead 6p orbital perpendicular to the skeletal plane. Single ionisation to provide ($PbMe_2$)⁺ increases the calculated bond angle to 118.6°, while double ionisation to ($PbMe_2$)²⁺ gives a linear ion, isoelectronic and isostructural with HgMe₂[22].

Isomeric forms of Pb_2Me_4 and of (Pb, Me,) +

Although dimers of germylenes and stannylenes, Ge_2R_4 and Sn_2R_4 , are well characterised structurally [23,24], very much less is known of the corresponding lead derivatives. Three constitutions for Pb_2Me_4 (1-3) were considered:

For both neutral and **cationic** species, the diplumbene **1** proved to have the lowest energies, and the cyclic system 2 to have the highest energies.

For 1 the neutral molecule was calculated to adopt the same C_{2h} conformation as found [23–25] for Ge_2R_4 and Sn_2R_4 . The Pb-Pb bond, so far from being a double bond as suggested by representation 1, is ca. 0.2 Å longer than that in ethane-like Pb_2Me_6 , and has a bond order of only 0.168 (cf. 0.603 in Pb_2Me_6). Moreover the structure of each $PbMe_2$ fragment in neutral 1 is scarcely different (Table 1) from that of the isolated monomer $PbMe_2$. The weakness of the Pb-Pb bond in neutral 1 is partly due to the Pb-Pb antibonding character of the HOMO: ionisation to [1]⁺ thus causes a significant decrease in the Pb-Pb bond length.

For the cyclic isomer 2, a $C_{2\nu}(syn)$ conformation with both terminal methyl groups on the same side of the planar central Pb_2C_2 ring was found to be marginally more stable, by 6.0 kJ mol⁻¹, than the $C_{2h}(anti)$ conformation having one terminal methyl group on either side of the ring. The behaviour of this dimer is thus very similar to that of $Pb_2Cl_4[9]$. The two conformers, *syn* and *anti*, of $[2]^+$ are of virtually identical energy.

Other ions (Pb, Me,) +

Two isomeric forms of $(Pb_2Me_5)^+ 4$ and 5 were considered:

Optimisation of both led to a single minimum, in which the coordination of the three-coordinate Pb of 4 is accurately planar, while the **Me₃Pb** is nearly planar,

perpendicular to the weak Pb-Pb bond (Table 1). This cation is best regarded as a donor-acceptor complex between $PbMe_2$ (acting as electron donor, with HOMO along the Pb-Pb bond) and $(PbMe_3)^+$ (acting as electron acceptor, with LUMO normal to its PbC_3 plane): the dinuclear cation is stabilised, by Pb-Pb bond formation, relative to its components by some 48 kJ mol⁻¹. No evidence was found for any minimum corresponding to 5.

On the other hand both cyclic and acyclic isomers 6 and 7 were found for $(Pb_2Me_3)^+$:

$$\begin{pmatrix} H_3 \\ \swarrow \\ MePb - PbMe \end{pmatrix}^+ \qquad (Me_2Pb - PbMe)^-$$
(7)

The cyclic isomer 6 has C_2 symmetry with one terminal methyl group on either side of the Pb₂C ring, while 7 of C_s symmetry, which is the more stable by some 40 kJ mol⁻¹ is accurately planar at the three-coordinate lead atom. The unique angle C-Pb-Pb is only a little larger than 90°, and this ion is best thought as a donor-acceptor complex between neutral PbMe₂, acting as electron donor, and (PbMe)⁺ acting as electron acceptor.

The $(Pb_2Me)^+$ cation also has two isomeric forms, of which the acyclic isomer $(PbPbCH_3)^+(8)$ is more stable than the cyclic isomer 9 by ca. 11 kJ mol⁻¹.

$$(Pb - PbMe)^{+} \begin{pmatrix} H_{3} \\ \swarrow \\ Pb - Pb \end{pmatrix}$$
(8)
(9)

The paramagnetic cation $(Pb_2Me_2)^+$ has C_2 molecular symmetry (cf. H_2O_2) with a dihedral angle of 78.9 °.

Mass spectral fragmentation of $PbMe_4$ and Pb_2Me_6

. 4

In the mass spectrum of PbMe₄, the principal fragment ions, apart from the low abundance molecular ion (PbMe₄)⁺ are (PbMe₃)⁺, (PbMe₂)⁺, and (PbMe)⁺: the respective appearance potentials are 9.3, 10.1, 12.7 and 13.1 eV[26]. The calculated energies and symmetries of the valence shell orbitals for PbMe₄ are given in Table 2: the orbital order corresponds to that suggested in a photo-electron study [10], although there are serious discrepencies between the several reported values of the first ionisation energy of PbMe₄, with a range of reported values between 9.3 eV[26] and 8.0 eV [27]. The ΔH_f° data of Table 1, together with the calculated value of ΔH_f° for the methyl radical, + 103.0 kJ mol⁻¹, lead to calculated ΔH_f° values for the fragments: (PbMe₃)⁺ + CH₃⁺, + 989.6 kJ mol⁻¹; (PbMe₂)⁺ + 2CH₃⁺, + 1103.9 kJ mol⁻¹; (PbMe)⁺ + 3CH₃⁺, + 1120.9 kJ mol⁻¹. All of the fragment ions could therefore be formed by ionisation of PbMe₄ from the t_1 level at -13.85 eV: however there is some evidence [9] that the first ionisation energies for organolead compounds as calculated by MNDO are systematically high, although the effects on the higher ionisation energies have not been studied.

Symmetry	Binding energy (eV)	Symmetry	Binding energy (eV)	
(a) PbMe4				
t ₂	10.28	<i>a</i> ₁	20.34	
<i>t</i> ₁	13.85	t ₂	29.87	
e	13.99	<i>a</i> ₁	33.20	
<i>t</i> ₂	14.29			
(b) Pb2Me6				
a_{1g}	9.15	e _u	14.15	
e	10.04	a_{1g}	14.43	
eu	10.51	a_{2u}	19.51	
e _g	13.82	a_{1g}	22.31	
e _s	13.89	e,	29.65	
eu	13.90	e _u	29.89	
eg	14.09	a _{2µ}	32.33	
a _{2u}	14.14	a_{1g}	32.95	

Table 2 Orbital symmetries and energies for PbMe₄ and Pb₂Me₅

The mass spectrum of Pb_2Me_6 contains [28] all of the dinuclear ions $(Pb_2Me_x)^+$ ($0 \le x \le 6$) as well as the mononuclear ions $(PbMe_3)^+$, $(PbMe_2)^+$, and $(PbMe)^+$. The molecular ion $(Pb_2Me_6)^+$ is of low abundance, and the most prominent ions are the closed shell cations $(Pb_2Me_5)^+$, $(PbMe_3)^+$ and $(PbMe)^+$. The ΔH_f° data of Table 1 give calculated values for the fragments: $(Pb_2Me_5)^+ + CH_3^+ + 983.3 \text{ kJ} \text{ mol}^{-1}$; $(PbMe_3)^+ + PbMe_3^- + 1022.7 \text{ kJ mol}^{-1}$; $(PbMe)^+ + PbMe_3^- + 2CH_3^+ + 1154 \text{ kJ mol}^{-1}$.

A noteworthy feature of each of these mass spectra [26,28] is the extreme weakness of the molecular ion peak: at 70 eV, the molecular ions $(PbMe_4)^+$ and (Pb_2Me_6) carry 0.3% and ca. 2% of the ion current respectively. These observations are readily understood in terms of the structures and energies calculated for the ions and described earlier: the C_{3v} isomer of $(PbMe_4)^+$ is well on the way to losing a methyl group, and is stabilised with respect to $(PbMe_3)^+$ and a free methyl radical by only 13.9 kJ mol⁻¹, so that if $(PbMe_4)^+$ is formed with no more than 0.15 eV of excess energy, dissociation to $(PbMe_3)^+$ will necessarily follow. Similarly $(Pb_2Me_6)^+$ is stabilised with respect to $(PbMe_3)^+$ and PbMe_3 by only 27.0 kJ mol⁻¹, so that formation of $(Pb_2Me_6)^+$ ions with an excess energy of only 0.3 eV can cause dissociation to give $(PbMe_3)^+$, easily the most abundant ion in the mass spectrum of $Pb_2Me_6[28]$. In each case, the lowest-energy ionisation of the neutral parent molecule effectively directs the resulting molecular ion along a reaction channel towards the product ion $(PbMe_3)^+$.

References

- 1 C. Glidewell, J. Grganomet. Chem., 294 (1985) 173.
- 2 C. Glidewell, J. Grganomet. Chem., 303 (1986) 337.
- 3 M.C.R Symons, J. Chem. Soc., Chem. Commun., (1982) 869.
- 4 B.W. Walther and F. Williams, J. Chem. Soc., Chem. Commun., (1982) 270.
- 5 C. Glidewell, J. Chem. Research, (1983), (S)22.
- 6 C. Glidewell, J. Chem. Soc., Perkin Trans. II, (1984) 1175.
- 7 M.J.S. Dewar and W. Thiel, J. Am. Chem. Soc., 99 (1977) 4899.

- 8 J.J.P. Stewart, QCPE No 455, Version 5.0.
- 9 M.J.S. Dewar, M.K. Holloway, G.L. Grady, and J.J.P. Stewart, Organometallics, 4 (1985) 1973.
- 10 S. Evans, J.C. Green, P.J. Joachim, A.F. Orchard, D.W. Turner, and J.P. Maier, J. Chem.Soc., Faraday Trans. II, 68 (1972) 905.
- 11 R.W. Fessenden, J. Phys. Chem., 71 (1967) 74.
- 12 M.C.R. Symons, J. Chem. Soc., Chem. Commun., (1981) 1251.
- 13 P.J. Krusic and J.K. Kochi, J. Am. Chem. Soc., 91 (1969) 3938.
- 14 R.V. Lloyd and M.T. Rogers, J. Am. Chem. Soc., 95 (1973) 2459.
- 15 S.A. Fieldhouse, A.R. Lyons, H.C. Starkie, and M.C.R. Symons, J. Chem. Soc., Dalton Trans., (1974) 1966.
- 16 M.N. Paddon-Row and K.N. Houk, J. Am. Chem. Soc., 103 (1981) 5046.
- 17 D. Griller, K.U. Ingold, P.J. Krusic, and H. Fischer, J. Am. Chem. Soc., 100 (1978) 6750.
- 18 C. Glidewell, Inorg. Chim. Acta, 29 (1978) L283.
- 19 A.V. Demidov, A.G. Gershikov, E.Z. Zasorin, V.P. Spiridonov, and A.A. Ivanov, Zh. Strukt. Khim, 24 (1983) 7.
- 20 B. Beagley and A.R. Medwid, J. Mol. Struct., 38 (1977) 229.
- 21 J.F. Beecher, J. Mol. Spectrosc., 21 (1966) 414.
- 22 K. Kashiwabara, S. Konaka, T. Iijima, and M. Kimura, Bull. Chem. Soc. Jpn., 46 (1973) 407.
- 23 D.E. Goldberg, D.H. Harris, M.F. Lappert, and K.M. Thomas, J. Chem. Soc., Chem. Commun., (1976) 2611.
- 24 P.B. Hitchcock, M.F. Lappert, S.J. Miles, and A.J. Thome, J. Chem. Soc., Chem. Commun., (1984) 480.
- 25 C. Glidewell, Chem. Scripta, 27 (1987) 437.
- 26 J.J. de Ridder and G. Dijkstra, Recl. Trav. Chim. Pays-Bas, 86 (1967) 737.
- 27 B.G. Hobrock and R.W. Kiser, J. Am. Chem. Soc., 65 (1961) 2186.
- 28 M.F. Lappert, J.B. Pedley, J. Siipson, and T.R. Spalding, J. Organomet. Chem., 29 (1971) 195.

,