The molecular and electronic structures of ions and radicals derived from tetramethyllead, hexamethyldilead, dimethyllead, and tetramethyldilead: an SCF-M 0 study

Christopher Glidewell
Chemistry Department, University of St Andrews, St Andrews, Fife KY16 9ST (U.K.)
(Received June Ist, 1990)

Abstract

Molecular geometries and energies have been calculated, using the semi-empirical MNDO method for closed shell species, and the UHF-MNDO method for neutral radicals and cation radicals for $\mathrm{PbMe}_{4}, \mathrm{~Pb}_{2} \mathrm{Me}_{6}, \mathrm{PbMe}_{2}$, and three isomeric forms of $\mathrm{Ph}_{2} \mathrm{Me}_{4}$ and all of their cation radicals, together with fragment ions and radicals including $\left(\mathrm{PbMe}_{3}\right)^{+}, \mathrm{PbMe}_{3}$, and $\left(\mathrm{Pb}_{2} \mathrm{Me}_{x}\right)^{+}$for $1 \leqslant x \leqslant 5$. The radical cation $\left(\mathrm{PbMe}_{4}\right)^{+}$is calculated to have $C_{3 v}$ skeletal symmetry, with a $D_{2 d}$ isomer some 26 $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ higher in energy: the dinuclear cation radical $\left(\mathrm{Pb}_{2} \mathbf{M e}_{6}\right)^{+}$is calculated to be a a(Pb-Pb) radical of $D_{3 d}$ skeletal symmetry. The mass spectral fragmentations of both PbMe_{4} and $\mathrm{Pb}_{2} \mathrm{Me}_{6}$ are discussed.

Introduction

In two recent papers [1,2], we reported MNDO calculations in radical cations derived from SnMe_{4} and $\mathrm{Sn}_{2} \mathrm{Me}_{6}$, and from GeMe_{4} and $\mathrm{Ge}_{2} \mathbf{M e}_{6}$. A major point of difference between $\left(\mathrm{SnMe}_{4}\right)^{+}$and $\left(\mathrm{GeMe}_{4}\right)^{+}$is that the tin cation was calculated [1] to have $C_{3 v}$ symmetry, consistent with the interpretation of its electron spin resonance spectrum in frozen CFCl_{3} matrices [3], whereas the germanium cation was calculated to have $D_{2 d}$ skeletal symmetry: experimentally $\left(\mathrm{GeMe}_{4}\right)^{+}$was found to have $C_{2 v}$ symmetry, suggested [4] to arise from $D_{2 d}$ by matrix perturbation effects.

As we have previously discussed cation radicals derived from $\mathbf{C M e}_{4}$ and $\mathbf{S i M e}_{4}$ [5,6], we present in this paper the results of a semi-empirical study of cations and radicals derived not only from PbMe_{4} and $\mathrm{Pb}_{2} \mathbf{M e}_{6}$, but also from the as yet uncharacterised PbMe_{2} and $\mathrm{Pb}_{2} \mathrm{Me}$.

Calculations

All calculations of molecular geometry and energy, and of electronic structure were made using the MNDO method [7], as implemented in Version 5.0 of the MOPAC system [8]. The published atomic parameters were used for H, C, and Pb [7,9]. UHF wavefunctions were employed for all open-shell species, and all geometric variables were independently and simultaneously optimised unless it is stated otherwise: the PRECISE option was used throughout. The accuracy and reliability of MNDO calculations on compounds containing lead have been discussed at length by Dewar [9].

Results and discussion

PbMe_{4} and $\mathrm{Pb}_{2} \mathrm{Me}_{6}$, and their radical cations

The two neutral molecules PbMe_{4} and $\mathrm{Pb}_{2} \mathrm{Me}_{6}$ optimise to geometries having T_{d} and $D_{3 d}$ skeletal symmetry precisely: in each case there is essentially free rotation about the $\mathrm{Pb}-\mathrm{C}$ bonds. These geometries have been previously discussed by Dewar, and the results obtained here are in agreement with those reported earlier [9].

The HOMO of PbMe_{4} is calculated to have t_{2} symmetry in the point group T_{d}, as suggested from an early photoelectron study [10]. The ion $\left(\mathrm{PbMe}_{4}\right)^{+}$is thus, after vertical ionisation, sensitive to Jahn-Teller distortion. Two distortion pathways are open for skeletal perturbation from T_{d} symmetry: distortion along one component of the e vibrational mode leads to $\boldsymbol{D}_{\mathbf{2 d}}$ symmetry, while distortion along a $\boldsymbol{t}_{\mathbf{2}}$ vibration gives a structure of $C_{3 v}$ symmetry. Free optimisation of the geometry of $\left(\mathrm{PbMe}_{4}\right)^{+}$converged to a structure of precise $C_{3 v}$ symmetry, in which the unique $\mathrm{Pb}-\mathrm{C}$ bond (Table 1) is considerably longer than the other three $\mathrm{Pb}-\mathrm{C}$ bonds; this structure is thus very similar to those calculated [1] and observed [3] for the analogous cation $\left(\mathrm{SnMe}_{4}\right)^{+}$. Within the $\mathrm{C}_{3 v}$ geometry, the PbMe_{3} fragment having three-fold rotational symmetry is very considerably flattened towards planarity: the C-Pb-C angle is 117.8°, considerably closer to the 120.0 " calculated for $\left(\mathrm{PbMe}_{3}\right)^{+}$ than to the 108.8 " calculated for the neutral radical PbMe_{3} (see below). Similarly the unique methyl group is considerably flattened, with an H-C-H angle of 117.8°, considerably closer to the 120° calculated, and observed [11], for the methyl radical than to the 110° expected in a normal methyl group bound to a heteroatom. These geometrical properties suggest that the $C_{3 v}$ isomer of $\left(\mathrm{PbMe}_{4}\right)^{+}$is tending towards dissociation to the cation $\left(\mathrm{PbMe}_{3}\right)^{+}$and the neutral methyl radical: the calculated energy for this dissociation is only $+13.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

Some $25 \mathrm{~kJ} \mathrm{~mol}^{-\mathbf{1}}$ higher in energy is an isomeric cation of $D_{2 d}$ symmetry: when only $C_{2 v}$ symmetry was imposed on the skeleton (cf the second isomer of ($\left.\mathbf{S n M e}_{4}\right)^{+}$ [1]), $D_{2 d}$ symmetry nevertheless resulted.

These two isomeric forms for $\left(\mathrm{PbMe}_{4}\right)^{+}$should be readily distinguishable using the hyperfine coupling due to hydrogen atoms in the ESR spectrum. In the $\mathrm{C}_{3 v}$ isomer, the calculated spin density at the hydrogen atoms in the unique methyl group is -0.0238 , while that for the remaining hydrogen atoms is +0.0020 : adopting the scale factor of 850 G suggested [1] for tin-centred radicals, the $C_{3 v}$ isomer of $\left(\mathrm{PbMe}_{4}\right)^{+}$may be expected to show hyperfine coupling to three equivalent hydrogen atoms with $\boldsymbol{A}\left({ }^{1} \mathbf{H}\right)$ of ca. 20 G , and to a further nine equivalent hydrogen atoms with $A\left({ }^{1} \mathrm{H}\right)$ of ca. 1.7 G . For the $D_{2 d}$ isomer, on the other hand, the
spin density on the twelve hydrogen atoms, rendered equivalent by a combination of skeletal symmetry and free rotation about the $\mathrm{Pb}-\mathrm{C}$ bonds, is -0.0013 , suggesting hyperfine coupling to twelve equivalent hydrogen atoms with $A\left({ }^{1} \mathrm{H}\right)$ of ca. 1.1 G.

In neutral $\mathrm{Pb}_{2} \mathbf{M e}_{6}$, theHOMO has $\mathrm{a}_{1 g}$ symmetry, and is strongly localised in the $\mathrm{Pb}-\mathrm{Pb}$ bond, as a bonding orbital. Vertical ionisation from this level to give $\left(\mathrm{Pb}_{2} \mathrm{Me}_{6}\right)^{+}$is thus expected to yield a molecular ion not sensitive to Jahn-Teller distortion, but with a much weakened $\mathrm{Pb}-\mathrm{Pb}$ bond. Full optimisation of this structure gave a geometry retaining $D_{3 d}$ skeletal symmetry, in which the $\mathrm{Pb}-\mathrm{Pb}$ distance has increased from $2.771 \AA$ calculated for neutral $\mathrm{Pb}_{2} \mathrm{Me}_{6}$ to 3.072 A calculated in the cation $\left(\mathrm{Pb}_{2} \mathrm{Me}_{6}\right)^{+}$. At the same time the individual PbMe_{3} fragments have become rather flatter: the $\mathrm{C}-\mathrm{Pb}-\mathrm{C}$ angle increased upon ionisation from $107.0^{\prime \prime}$ in the neutral to $113.8^{\prime \prime}$ in the cation, intermediate between the values calculated for the radical PbMe_{3} and the corresponding cation $\left(\mathrm{PbMe}_{3}\right)^{+}$(see below, and Table 1). This cation is thus very similar in structure to the analogous tin cation $\left(\mathrm{Sn}_{\mathbf{2}} \mathrm{Me}_{6}\right)^{+}$[1]: neither of these species exhibits the almost planar coordination of the metal atoms deduced [12] from the ESR spectrum. As for the tin system also, ionisation of $\mathrm{Pb}_{2} \mathrm{Me}_{6}$ significantly weakens the $\mathrm{Pb}-\mathrm{Pb}$ bond, as expected from the localisation of the HOMO in this bond: the calculated value of $\mathrm{D}\left(\mathrm{Me}_{3} \mathrm{~Pb}-\right.$ $\left.\mathrm{PbMe}_{3}\right)$ in the neutral compound is $82.0 \mathrm{~kJ} \mathrm{~mol}{ }^{-1}$, while that of $\mathrm{D}\left(\mathrm{Me}_{3} \mathrm{~Pb}^{+}-\mathrm{PbMe}_{3}\right)$ in $\left(\mathrm{Pb}_{2} \mathrm{Me}_{6}\right)^{+}$is only $27.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

PbMe_{3} and $\left(\mathrm{PbMe}_{3}\right)^{+}$

The neutral radical PbMe_{3} is calculated to have $C_{3 v}$ skeletal symmetry with a sharply pyramidal structure: the calculated angle C-Pb-C is 108.8°, similar to the angles calculated for the related radicals $\mathrm{SiMe}_{3}\left(113.5^{\circ}[5]\right), \mathrm{GeMe}_{3}\left(112.6^{\circ}[2]\right)$ and $\mathrm{SnMe}_{3}\left(110.0^{\circ}[1]\right)$: these radicals, which are all found experimentally to be pyramidal [13-15], may be contrasted with CMe_{3}, calculated [5,16] and observed [17] to have a planar skeleton. There is thus a monotonic change in the C-M-C angle in radicals $\mathbf{M M e}_{3}$ as M changes from carbon through to lead. The distinction between CMe_{3} and its heavier analogues has been discussed [1] in terms [18] of the relative electronegativities of the central atom and the ligating methyl groups.

The cation $\left(\mathrm{PbMe}_{3}\right)^{+}$is calculated to have a planar PbC_{3} skeleton, as expected: the LUMO is largely concentrated on the central atom, as a 6 p orbital normal to the skeletal plane.

ESR spectroscopy should provide a ready distinction between $\left(\mathrm{Pb}_{2} \mathbf{M e}_{6}\right)^{+}$and its likely open-shell dissociation product PbMe_{3}. The mean spin densities calculated at hydrogen are +0.0016 and -0.0073 respectively: hence, using the same factor, 850 G , as earlier, the ESR spectrum of $\left(\mathrm{Pb}_{\mathbf{2}} \mathrm{Me}_{6}\right)^{+}$should be characterised by hyperfine coupling to eighteen equivalent hydrogen atoms with $A\left({ }^{1} \mathrm{H}\right)$ of ca. 1.4. G , while that of PbMe_{3} should be characterised by hyperfine coupling to only nine equivalent hydrogen atoms, but with $A\left({ }^{1} \mathrm{H}\right)$ of ca. 6.2 G . Moreover the 6 s spin density calculated at lead (${ }^{207} \mathrm{~Pb}$ has natural abundance 22.1% and nuclear spin $I=\mathbf{1 / 2}$) is +0.0568 in the mononuclear radical PbMe_{3} but only -0.0068 in binuclear $\left(\mathrm{Pb}_{2} \mathrm{Me}_{6}\right)^{+}$: hence the patterns of ${ }^{207} \mathrm{~Pb}$ satellites will also be entirely different.

PbMe_{2} and $\left(\mathrm{PbMe}_{2}\right)^{+}$

The lead(II)alkyl PbMe_{2} is calculated to have a bond angle C-Pb-C of only 97.3": this is typical not only of the bond angles in lead(II) halides [19], but of other
Table 1
Optimised molecular parameters

${ }^{a}$ Skeletal symmetry $D_{2 d}$ imposed: structure optimised with 38 independent geometric variables, $(3 \mathrm{~N}-6)=45$.
(d) Isomeric forms of $\mathrm{Pb}_{2} \mathrm{Me}_{4}$ and of $\left(\mathrm{Pb}_{2} \mathrm{Me}_{4}\right)^{+}$ $\mathrm{Pb}_{2} \mathrm{Me}_{4},(1) \quad \mathrm{C}_{2 h} \quad+67.5$ $\mathrm{Pb}_{2} \mathrm{Me}_{4}, \mathbf{(1)}$
$\left(\mathrm{~Pb}_{2} \mathrm{Me}_{4}\right)^{+}$
$\mathrm{Pb}_{2} \mathrm{Me}_{4}$ (2)
$\left(\mathrm{Pb}_{2} \mathrm{Me}_{4}\right)^{+}$
$\mathrm{Me}_{3} \mathrm{PbPbMe}$ (3)
$\left(\mathrm{Me}_{3} \mathrm{PbPbMe}\right)^{+}$
2.197(x 3)
$\times 1)$
$\times 1$

$2.942116 .2(\times 3)$
$104.2(\times 1)$
2.911102 .0
$2.930-$
$2.857-$
$\begin{array}{ll}2.975 & 97.6 \\ 2.929 & 107.3 \\ 2.876 & \mathbf{9 8 . 9 (C _ { b } - P b - C _ { b })} \\ & 95.8\left(C_{\mathbf{t}}-\mathrm{Pb}-\mathrm{C}_{\mathrm{b}}\right) \\ 3.081 & \mathbf{1 0 7 . 6 (\mathrm { C } _ { \mathrm { b } } - \mathrm { Pb } _ { \mathbf { 1 } } - \mathrm { C } _ { \mathrm { b } })}\end{array}$
io $\stackrel{\circ}{\text { i }}$
$95 . q \times 2)$
$102.0(\times 1)$
$126.7\left(\mathrm{x}_{2}, \mathrm{~Pb}_{1}\right)$
$169.3\left(\mathrm{x} \mathrm{1}, \mathrm{Pb}_{2}\right)$
$\left.\begin{array}{l}101.3\left(\begin{array}{ll}\mathrm{X} & 3\end{array}\right) \\ 127.9\left(\begin{array}{l}\mathrm{x}\end{array}\right) \\ 129 . q\end{array}\right)$
alkyl derivatives of the heavier main-group elements, such as $\mathbf{S b M e}_{3}[20]$ and $\mathbf{S e M e}_{2}$ [21].

The HOMO of PbMe_{2} is of \boldsymbol{a}_{1} symmetry, localised mainly on the lead atom, and can be described as a lone pair pointing along the two-fold rotation axis. The LUMO is an almost pure lead $6 p$ orbital perpendicular to the skeletal plane. Single ionisation to provide $\left(\mathrm{PbMe}_{2}\right)^{+}$increases the calculated bond angle to 118.6°, while double ionisation to $\left(\mathrm{PbMe}_{2}\right)^{2+}$ gives a linear ion, isoelectronic and isostructural with HgMe_{2} [22].

Isomeric forms of $\mathrm{Pb}_{2} \mathrm{Me}_{4}$ and of $(\mathrm{Pb}, \mathrm{Me},)^{+}$
Although dimers of germylenes and stannylenes, $\mathrm{Ge}_{2} \mathbf{R}_{\mathbf{4}}$ and $\mathrm{Sn}_{2} \mathbf{R}_{\mathbf{4}}$, are well characterised structurally [23,24], very much less is known of the corresponding lead derivatives. Three constitutions for $\mathrm{Pb}_{2} \mathbf{M e}_{4}$ (1-3) were considered:

(2)

For both neutral and cationic species, the diplumbene 1 proved to have the lowest energies, and the cyclic system 2 to have the highest energies.

For 1 the neutral molecule was calculated to adopt the same $C_{2 h}$ conformation as found [23-25] for $\mathrm{Ge}_{2} \mathbf{R}_{4}$ and $\mathrm{Sn}_{2} \mathbf{R}_{4}$. The $\mathrm{Pb}-\mathrm{Pb}$ bond, so far from being a double bond as suggested by representation $\mathbf{1}$, is ca. $0.2 \AA$ longer than that in ethane-like $\mathrm{Pb}_{2} \mathrm{Me}_{6}$, and has a bond order of only 0.168 (cf. 0.603 in $\mathrm{Pb}_{2} \mathrm{Me}_{6}$). Moreover the structure of each PbMe_{2} fragment in neutral $\mathbf{1}$ is scarcely different (Table 1) from that of the isolated monomer PbMe_{2}. The weakness of the $\mathrm{Pb}-\mathrm{Pb}$ bond in neutral $\mathbf{1}$ is partly due to the $\mathrm{Pb}-\mathrm{Pb}$ antibonding character of the HOMO: ionisation to [1] ${ }^{+}$ thus causes a significant decrease in the $\mathrm{Pb}-\mathrm{Pb}$ bond length.

For the cyclic isomer 2 , a $C_{2 v}(s y n)$ conformation with both terminal methyl groups on the same side of the planar central $\mathrm{Pb}_{2} \mathrm{C}_{2}$ ring was found to be marginally more stable, by $6.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, than the $C_{2 h}$ (anti) conformation having one terminal methyl group on either side of the ring. The behaviour of this dimer is thus very similar to that of $\mathrm{Pb}_{2} \mathrm{Cl}_{4}$ [9]. The two conformers, syn and anti, of [2] ${ }^{+}$are of virtually identical energy.

Other ions ($\mathrm{Pb}, \mathrm{Me},)^{+}$
Two isomeric forms of $\left(\mathrm{Pb}_{2} \mathrm{Me}_{5}\right)^{+} 4$ and $\mathbf{5}$ were considered:

(5)

Optimisation of both led to a single minimum, in which the coordination of the three-coordinate Pb of 4 is accurately planar, while the $\mathrm{Me}_{3} \mathrm{~Pb}$ is nearly planar,
perpendicular to the weak $\mathrm{Pb}-\mathrm{Pb}$ bond (Table 1). This cation is best regarded as a donor-acceptor complex between PbMe_{2} (acting as electron donor, with HOMO along the $\mathrm{Pb}-\mathrm{Pb}$ bond) and $\left(\mathrm{PbMe}_{3}\right)^{+}$(acting as electron acceptor, with LUMO normal to its PbC_{3} plane): the dinuclear cation is stabilised, by $\mathrm{Pb}-\mathrm{Pb}$ bond formation, relative to its components by some $48 \mathrm{~kJ} \mathrm{~mol}^{-1}$. No evidence was found for any minimum corresponding to 5 .

On the other hand both cyclic and acyclic isomers 6 and 7 were found for $\left(\mathrm{Pb}_{2} \mathrm{Me}_{3}\right)^{+}$:

$\left(\mathrm{Me}_{2} \mathrm{~Pb}-\mathrm{PbMe}\right)^{+}$
(6)

The cyclic isomer 6 has C_{2} symmetry with one terminal methyl group on either side of the $\mathrm{Pb}_{2} \mathrm{C}$ ring, while 7 of C_{s} symmetry, which is the more stable by some 40 kJ mol^{-1} is accurately planar at the three-coordinate lead atom. The unique angle $\mathrm{C}-\mathrm{Pb}-\mathrm{Pb}$ is only a little larger than 90°, and this ion is best thought as a donor-acceptor complex between neutral PbMe_{2}, acting as electron donor, and $(\mathrm{PbMe})^{+}$acting as electron acceptor.

The $\left(\mathrm{Pb}_{2} \mathrm{Me}\right)^{+}$cation also has two isomeric forms, of which the acyclic isomer $\left(\mathrm{PbPbCH}_{3}\right)^{+}(8)$ is more stable than the cyclic isomer 9 by ca. $11 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

(9)

The paramagnetic cation $\left(\mathrm{Pb}_{2} \mathrm{Me}_{2}\right)^{+}$has C_{2} molecular symmetry (cf. $\mathrm{H}_{2} \mathrm{O}_{2}$) with a dihedral angle of 78.9°.

Mass spectral fragmentation of PbMe_{4} and $\mathrm{Pb}_{2} \mathrm{Me}_{6}$
In the mass spectrum of PbMe_{4}, the principal fragment ions, apart from the low abundance molecular ion $\left(\mathrm{PbMe}_{4}\right)^{+}$are $\left(\mathrm{PbMe}_{3}\right)^{+},\left(\mathrm{PbMe}_{2}\right)^{+}$, and $(\mathrm{PbMe})^{+}$: the respective appearance potentials are 9.3, 10.1, 12.7 and $13.1 \mathrm{eV}[26]$. The calculated energies and symmetries of the valence shell orbitals for PbMe_{4} are given in Table 2: the orbital order corresponds to that suggested in a photo-electron study [10], although there are serious discrepencies between the several reported values of the first ionisation energy of PbMe_{4}, with a range of reported values between 9.3 eV [26] and 8.0 eV [27]. The $\Delta H_{\mathrm{f}}^{\circ}$ data of Table 1, together with the calculated value of $\Delta H_{\mathrm{f}}{ }^{\circ}$ for the methyl radical, $+103.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, lead to calculated $\Delta H_{\mathrm{f}}{ }^{\circ}$ values for the fragments: $\left(\mathrm{PbMe}_{3}\right)^{+}+\mathrm{CH}_{3},+989.6 \mathrm{~kJ} \mathrm{~mol}^{-1} ;\left(\mathrm{PbMe}_{2}\right)^{+}+2 \mathrm{CH}_{3}^{-},+1103.9 \mathrm{~kJ}$ mol^{-1}; $(\mathrm{PbMe})^{+}+3 \mathrm{CH}_{3}^{+},+1120.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$. All of the fragment ions could therefore be formed by ionisation of PbMe_{4} from the t_{1} level at -13.85 eV : however there is some evidence [9] that the first ionisation energies for organolead compounds as calculated by MNDO are systematically high, although the effects on the higher ionisation energies have not been studied.

Table 2
Orbital symmetries and energies for PbMe_{4} and $\mathrm{Pb}_{2} \mathrm{Me}_{6}$

Symmetry	Binding energy (eV)	Symmetry	Binding energy (eV)
(a) PbMe ${ }_{4}$			
t_{2}	10.28	a_{1}	20.34
t_{1}	13.85	t_{2}	29.87
e	13.99	a_{1}	33.20
t_{2}	14.29		
$(b) \mathrm{Pb}_{2} M e_{6}$			
$a_{1 g}$	9.15	e_{u}	14.15
e_{g}	10.04	$a_{1 g}$	14.43
e_{u}	10.51	$a_{2 u}$	19.51
e_{g}	13.82	$a_{1 g}$	22.31
e_{g}	13.89	e_{g}	29.65
e_{u}	13.90	e_{u}	29.89
e_{g}	14.09	$a_{2 u}$	32.33
$a_{2 u}$	14.14	$a_{1 g}$	32.95

The mass spectrum of $\mathrm{Pb}_{2} \mathrm{Me}_{6}$ contains [28] all of the dinuclear ions $\left(\mathrm{Pb}_{2} \mathrm{Me}_{x}\right)^{+}$ $(0 \leqslant x \leqslant 6)$ as well as the mononuclear ions $\left(\mathrm{PbMe}_{3}\right)^{+},\left(\mathrm{PbMe}_{2}\right)^{+}$, and $(\mathrm{PbMe})^{+}$. The molecular ion $\left(\mathrm{Pb}_{2} \mathrm{Me}_{6}\right)^{+}$is of low abundance, and the most prominent ions are the closed shell cations $\left(\mathrm{Pb}_{2} \mathrm{Me}_{5}\right)^{+},\left(\mathrm{PbMe}_{3}\right)^{+}$and $(\mathrm{PbMe})^{+}$. The $\Delta H_{\mathrm{f}}{ }^{\circ}$ data of Table 1 give calculated values for the fragments: $\left(\mathrm{Pb}_{2} \mathrm{Me}_{5}\right)^{+}+\mathrm{CH}_{3},+983.3 \mathrm{~kJ}$ $\mathrm{mol}^{-1} ;\left(\mathrm{PbMe}_{3}\right)^{+}+\mathrm{PbMe}_{3},+1022.7 \mathrm{~kJ} \mathrm{~mol}^{-1} ;\left(\mathrm{PbMe}^{+}+\mathrm{PbMe}_{3}+2 \mathrm{CH}_{3},+1154\right.$ $\mathrm{kJ} \mathrm{mol}^{-1}$.

A noteworthy feature of each of these mass spectra $[26,28]$ is the extreme weakness of the molecular ion peak: at 70 eV , the molecular ions $\left(\mathrm{PbMe}_{4}\right)^{+}$and $\left(\mathrm{Pb}_{2} \mathrm{Me}_{6}\right)$ carry 0.3% and ca. 2% of the ion current respectively. These observations are readily understood in terms of the structures and energies calculated for the ions and described earlier: the $C_{3 v}$ isomer of $\left(\mathrm{PbMe}_{4}\right)^{+}$is well on the way to losing a methyl group, and is stabilised with respect to $\left(\mathrm{PbMe}_{3}\right)^{+}$and a free methyl radical by only $13.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$, so that if $\left(\mathrm{PbMe}_{4}\right)^{+}$is formed with no more than 0.15 eV of excess energy, dissociation to $\left(\mathrm{PbMe}_{3}\right)^{+}$will necessarily follow. Similarly $\left(\mathrm{Pb}_{\mathbf{2}} \mathbf{M e}_{6}\right)^{+}$ is stabilised with respect to $\left(\mathrm{PbMe}_{3}\right)^{+}$and PbMe_{3} by only $27.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$, so that formation of $\left(\mathrm{Pb}_{2} \mathrm{Me}_{6}\right)^{+}$ions with an excess energy of only 0.3 eV can cause dissociation to give $\left(\mathrm{PbMe}_{3}\right)^{+}$, easily the most abundant ion in the mass spectrum of $\mathrm{Pb}_{2} \mathrm{Me}_{6}$ [28]. In each case, the lowest-energy ionisation of the neutral parent molecule effectively directs the resulting molecular ion along a reaction channel towards the product ion $\left(\mathrm{PbMe}_{3}\right)^{+}$.

References

[^0]8 J.J.P. Stewart, QCPE No 455, Version 5.0.
9 M.J.S. Dewar, M.K. Holloway, G.L. Grady, and J.J.P. Stewart, Organometallics, 4 (1985) 1973.
10 S. Evans, J.C. Green, P.J. Joachim, A.F. Orchard, D.W. Turner, and J.P. Maier, J. Chem. Soc., Faraday Trans. II, 68 (1972) 905.
11 R.W. Fessenden, J. Phys. Chem., 71 (1967) 74.
12 M.C.R. Symons, J. Chem. Soc., Chem. Commun., (1981) 1251.
13 P.J. Krusic and J.K. Kochi, J. Am. Chem. Soc., 91 (1969) 3938.
14 R.V. Lloyd and M.T. Rogers, J. Am. Chem. Soc., 95 (1973) 2459.
15 S.A. Fieldhouse, A.R. Lyons, H.C. Starkie, and M.C.R. Symons, J. Chem. Soc., Dalton Trans., (1974) 1966.

16 M.N. Paddon-Row and K.N. Houk, J. Am. Chem. Soc., 103 (1981) 5046.
17 D. Griller, K.U. Ingold, P.J. Krusic, and H. Fischer, J. Am. Chem. Soc., 100 (1978) 6750.
18 C. Glidewell, Inorg. Chim. Acta, 29 (1978) L283.
19 A.V. Demidov, A.G. Gershikov, E.Z. Zasorin, V.P. Spiridonov, and A.A. Ivanov, Zh. Strukt. Khim, 24 (1983) 7.
20 B. Beagley and A.R. Medwid, J. Mol. Struct., 38 (1977) 229.
21 J.F. Beecher, J. Mol. Spectrosc., 21 (1966) 414.
22 K. Kashiwabara, S. Konaka, T. Iijima, and M. Kimura, Bull. Chem. Soc. Jpn., 46 (1973) 407.
23 D.E. Goldberg, D.H. Harris, M.F. Lappert, and K.M. Thomas, J. Chem. Soc., Chem. Commun., (1976) 2611.

24 P.B. Hitchcock, M.F. Lappert, S.J. Miles, and A.J. Thome, J. Chem. Soc., Chem. Commun., (1984) 480.

25 C. Glidewell, Chem. Scripta, 27 (1987) 437.
26 J.J. de Ridder and G. Dijkstra, Recl. Trav. Chim. Pays-Bas, 86 (1967) 737.
27 B.G. Hobrock and R.W. Kiser, J. Am. Chem. Soc., 65 (1961) 2186.
28 M.F. Lappert, J.B. Pedley, J. Siipson, and T.R. Spalding, J. Organomet. Chem., 29 (1971) 195.

[^0]: 1 C. Glidewell, J. G rganomet. Chem., 294 (1985) 173.
 2 C. Glidewell, J. G rganomet. Chem., 303 (1986) 337.
 3 M.C.R Symons, J. Chem. Soc., Chem. Commun., (1982) 869.
 4 B.W. Walther and F. Williams, J. Chem. Soc., Chem. Commun., (1982) 270.
 5 C. Glidewell, J. Chem. Research, (1983), (S)22.
 6 C. GlidewelI, J. Chem. Soc., Perkin Trans. II, (1984) 1175.
 7 M J.S. Dewar and W. Thiel, J. Am. Chem. Soc., 99 (1977) 4899.

